

NAPA VALLEY TRANSPORTATION AUTHORITY TAC Agenda Letter

TO:	Technical Advisory Committee
FROM:	Kate Miller, Executive Director
REPORT BY:	Diana Meehan, Senior Planner (707) 259-8327 / Email: <u>dmeehan@nvta.ca.gov</u>
SUBJECT:	Transportation Fund for Clean Air (TFCA) Program Manager Fund Project List for Fiscal Year Ending (FYE) in 2022

RECOMMENDATION

That the TAC recommend the Napa Valley Transportation Authority (NVTA) Board approve the Transportation Fund for Clean Air (TFCA) Program Manager Project List for Fiscal Year Ending (FYE) in 2022.

EXECUTIVE SUMMARY

On February 17, 2021 the NVTA Board approved the expenditure plan and opened a call for projects for the TFCA Program Manager Funds which closed on March 19, 2021. One project was submitted by the City of Napa for FYE 2022, no projects were submitted for FYE 2023 or FYE 2024. NVTA is proposing to use the remaining portion of the 2022 TFCA funds for the City of St. Helena Main Street Pedestrian Improvements project.

The proposed final list of projects for FYE 2022 is shown in Table 1 below. Projects have undergone a cost effective analysis and are eligible to receive funds. Approved projects must be submitted to the BAAQMD by November 1, 2021 to meet the programming deadline. If funds are not programmed by the Air District deadline, funds may be reprogrammed to another county.

FYE 2022 TFCA ExpendituresAmountAdministration Costs for FYE 2022\$17,485City of Napa-Westwood Sidewalk Project\$40,360City of St. Helena-Main St. Sidewalk Project\$149,344TOTAL207,189

Table 1: Proposed FYE 2022 TFCA Program Manager Projects

*FYE 2022 funds must be programmed no later than November 1, 2021.

FISCAL IMPACT

Is there a Fiscal Impact? Yes, TFCA eligible projects totaling \$207,189 (including administrative costs) will be funded with FYE 2022 TFCA Program Manager funds.

Is it currently budgeted? Yes.

Where is it budgeted? TFCA FYE 2022 funds.

Future fiscal impact? No.

Consequences if not approved? TFCA FYE 2022 Projects will not be funded and Napa County funds may be programmed to another county.

BACKGROUND AND DISCUSSION

The Transportation Fund for Clean Air (TFCA) is a grant program, funded by a \$4 surcharge on motor vehicles registered in the Bay Area. This generates approximately \$22 million per year in revenues. The purpose of the TFCA program is to provide grants to implement the most cost-effective projects in the Bay Area that will decrease motor vehicle emissions, and thereby improve air quality. Forty percent of the DMV funds generated in Napa are returned to the NVTA for distribution to local projects. The remaining sixty percent is allocated by the BAAQMD under the Regional Program. Projects must have an air quality benefit and be cost effective. Air District rules and statutes only allow funds to be retained for two years unless an extension is requested. Bicycle projects are not allowed an extension and funds programmed to bicycle projects must be expended in two years.

NVTA adopts a list of projects annually to be funded by the TFCA Program Manager funds. In 2018, staff proposed programming TFCA funds for a three-year cycle similar to the State Transportation Improvement Program (STIP) in order aid in local planning processes. The first three-year programming cycle was successful because jurisdictions

submitted project applications for the first year, and NVTA had larger capital projects that were eligible for TFCA in the outer two years of the cycle. However, in this cycle, only a single application was received requesting funds in the first year, and no requests were made for the outer years. Staff reviewed existing projects within the county that have funding shortfalls, and is recommending programming the remaining FYE 2022 funds to the City of St. Helena Main Street Sidewalk Project. If the additional funds are not programmed, Napa County may lose them to another county.

The TFCA program can fund a wide range of project types, including the construction of new bicycle lanes; shuttle and feeder bus services to train stations; ridesharing programs to encourage carpool and transit use; bicycle facility improvements such as bicycle racks and lockers; electric vehicles and electric vehicle infrastructure; and arterial management projects that reduce traffic congestion such as signal interconnect projects.

SUPPORTING DOCUMENT

Attachment: (1) FYE 2022 TFCA Application

Project Information Form

- A. Project Number: <u>22NAP01</u>
- B. Project Title: <u>Westwood Avenue Sidewalk Improvements</u>
- C. Project Category (project will be evaluated under this category): <u>9b.</u>
- D. TFCA County Program Manager Funds Allocated: \$40,360
- E. TFCA Regional Funds Awarded (if applicable): \$_____
- F. Total TFCA Funds Allocated (sum of C and D): \$40,360_____
- G. Total Project Cost: \$640,360____
- H. Project Description:

The City of Napa will use TFCA funds to construct sidewalks on both sides of Westwood Avenue between Laurel Street and Chelsea Avenue. This project is located in the Westwood neighborhood of the City of Napa. Westwood Avenue does not currently have continuous sidewalks. This project would construct approximately 2,000ft of pedestrian facilities to close gaps in the existing pedestrian network in order to connect with nearby transit stops, Napa Valley Language Academy elementary school, employment destinations, and neighborhood serving retail.

Per 2019 American Community Survey 5-year data and local school data, the population of workers aged 16+ in the project area is 2670 and the student body of Napa Valley Language Academy is 658.

I. Final Report Content: Final Report form and final Cost Effectiveness Worksheet

The "Trip Reduction" final Report form and final Cost Effectiveness Worksheet will be completed and submitted after project completion.

J. Attach a completed Cost-Effectiveness Worksheet and any other information used to evaluate the proposed project.

See attached for the project's completed Cost-Effectiveness Worksheet.

K. If a **ridesharing**, **shuttle and feeder bus service**, **transit information**, **or smart growth project**, explain how the number of vehicle trips that will be reduced by the project was estimated, and provide supporting information and data to justify the estimate.

The project assumed 53 one-way commute trips and 26 one-way school trips. The following supporting information and data was used to justify those estimates:

Commute Trips:

- Per 2019 American Community Survey (ACS) 5-year data, there are 2670 workers ages 16+ in the project area.
- Per 2019 ACS data, 1.5% of workers in the project area currently commute via walking compared to 2.5% Citywide.

- Per 2019 ACS data, 9.3% of workers in the project area have a commute of <10 minutes and 9.9% have a commute of 10-14 minutes.
- Project assumes a 1% commute mode shift*
- Calculation: 2670 x 1% = 26.7 (two-way trips) = 53.4 (one-way trips)

School Trips:

- Napa Valley Language Academy (NVLA) elementary school has 658 students.
- Based on pre-pandemic hand count tallies and parent surveys, the percent of students at NVLA who walk to school is 2.32% lower than the district average.
- Project assumes a 2% walk mode shift*
- Calculation: 658 x 2% = 13.16 (two-way trips) = 26.32 (one-way trips)

*The project area is located within a regionally designated Community of Concern, which was included in the Napa Valley Community Based Transportation Plan (CBTP). Community outreach conducted as part of the CBTP identified that nearly 20% of comments received indicated a desire for increased pedestrian safety and improved pedestrian access to schools and transit stops. Thus there is high-demand for pedestrian improvements in the project area which supports the mode shift assumptions used.

L. If an **arterial management or signal timing project**, confirm that the data for traffic volume and average vehicle speed be generated concurrently (i.e., during the exact same day and time period).

N/A.

M. Has or will this project receive any other TFCA funds, such as Regional Funds?

No.

N. Comments (if any):

The project area is located within a regionally significant Community of Concern (census tract 2008.04) as designated by the Metropolitan Transportation Commission. The project area meets this designation because it exceeds the established concentration thresholds for the disadvantage factors of minority, low-income households, limited English proficiency, and single-parent family.

O. Please indicate if the project is located in a SB535 Disadvantaged Community and/or AB1550 Lowincome Community (Please use the map to find your project's location: https://ww3.arb.ca.gov/cc/capandtrade/auctionproceeds/communityinvestments.htm)

Yes, the project is located within an AB1550 Low-income Community.

RIDESHARING, BICYCLE, SHUTTLE, AND SMART GROWTH PROJECTS FYE 2022 TFCA County Progam Manager Fund Worksheet

Version 2022.2, Updated 1/4/21

General Information Tab: Complete areas shaded in yellow.

Project Number (22XXXYY)	22NAP01
Project Title	Westwood Avenue Sidewalk Improvements
Project Type Code (e.g., 7a)	9b
County (2-3 character abbreviation)	NAP
Worksheet Calculated By	Lorien Clark
Date of Submission	3/19/2021
Project Sponsor	
Project Sponsor Organization	City of Napa
Public Agency? (Y or N)	Y
Contact Name	Rosalba Ramirez
Email Address	rramirez@cityofnapa.org
Phone Number	707-257-9520
Mailing Address	P.O. Box 660
City	Napa
State	CA
Zip	94559
Project Schedule	
Project Start Date	10/1/2021
Project Completion Date	6/30/2022
Final Report to CMA	10/31/2022

RIDESHARING, BICYCLE, SHUTTLE, AND SMART GROWTH PROJECTS

FYE 2022 TFCA County Progam Manager Fund W Version 2022.2, Updated 1/4/21

	-	-		-	
ľ	Prog	gram Manage	r Proj.#:		22NAP01
Γ		Route	e Name:	W	estwood Ave

Cost Effectiveness inputs	
Project Operational Start Year:	2022
# Years Effectiveness:	10
Project Operational End Year:	2032
Total Cost for route:	640,360
Total Cost for route 40%:	40,360
Total Cost for route 60%:	NA
Total TFCA Cost for route:	\$40,360.00

Calculations Tab: Complete areas shaded in yellow only. SAMPLE ENTRIES ARE SHOWN IN LIGHT BLUE

		Emission	Reduction	n Calculation	18			
Step 1 - Emissions for Elimi	nated Trips							
A	В	С	D	E	F	G	Н	
# Trips/Day (1-way)	Days/Yr	Trip Length (1- way)	VMT	ROG Emissions (gr/yr)	NOx Emissions (gr/yr)	Exhaust &Trip End PM10 Emissions (gr/yr) *	Other PM10 Emissions (gr/yr) *	CO2 Emissions (gr/yr)
100	250	16	304294	28,483	20,992	596	76,739	73,119,878
53	240	1	12,720	4,157	1,689	83	3,208	3,644,107
26	180	1	4,680	1,530	622	30	1,180	1,340,756
			0	0	0	0	0	0
			0	0	0	0	0	0
		Total	17,400	5,687	2,311	113	4,388	4,984,863

Step 2 - Emissions for New 1	rips to Acces	s Transit/Ride	esharing					
50	250	3	304294	25,307	20,123	534	76,739	72,490,780
			0	0	0	0	0	0
			0	0	0	0	0	0
	•	Total	0	0	0	0	0	0

Step 3A - Emissions for Shuttle/Vanpool Vehicles up to GVW of 14,000 lbs. М В D F G н K 1 A F Factor Tab. ARB Table 2 or 7 See Emi 0.1 CO2 Factor (g/mi) (See CO2 Table for ROG Factor NOx Factor Exhaust PM10 Total PM10 Factor Total Annual VMT ROG Emissions NOx Emissions Exhaust PM10 CO2 Emissions # Vehicles, Model Year Emission Std. Vehicle GVW Other PM10 Emissions (gr/yr Factor (g/mi) (sum all vehicles) (gr/mi) (g/mi) (g/mi) (gr/yr) (gr/yr) Emissions (gr/yr) (gr/yr) LD and LHD) LEV 10,001-14,000 0.23 1,840 6,880,000 2,2005 0.4 0.11 8000 3,200 960 1.600 0 Tota

Step 3B - Emissions for Bus	es															
A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	P	Q
				See Emiss	on Factors Tab, E	missions for Buses Table										
Vehicle Ref #	Engine Year, Make, & Model	Odometer reading	ROG Factor (gr/mi)	ROG DR (g/10k miles)	NOx Factor (g/mi)	Nox DR (g/10k miles	Exhaust PM10 Factor (g/mi)	Exhaust PM DR (g/10k miles)	Other PM10 Factor (g/mi)	CO2 Factor (g/mi)	Total Annual VMT (sum all vehicles)	ROG Emissions (gr/yr)	NOx Emissions (gr/yr)	Exhaust PM10 Emissions (gr/yr)	Other PM10 Emissions (gr/yr)	CO2 Emissions (gr/yr)
												0.00	0	0	0	0
												0.00	0	0	0	0
												0.00	0	0	0	0
										Total	0	0	0	0	0	0

Cost Effectiveness Results	Annual	Lifetime	
1. VMT Reduced	17,400.00	174,000.00	Miles
2. Trips Reduced	12,720.00	127,200.00	Trips
3. ROG Emissions Reduced	0.0063	0.063	Tons
4. NOx Emissions Reduced	0.0025	0.025	Tons
5. PM Emissions Reduced	0.0050	0.050	Tons
6. PM Weighted Emissions Reduced	0.0073	0.073	Tons
7. CO2 Emissions Reduced	5.4948	54.948	Tons
8. Emission Reductions (ROG, NOx & PM)	0.0138	0.138	Tons
9. TFCA Project Cost - Cost Effectiveness (ROG, Nox & PM)		292,946.25	/Ton
10. TFCA Project Cost - Cost Effectiveness (ROG, NOx & Weighted PM). THIS VALUE MUST MEET POLICY	REQUIREMENTS.	\$249,992	/Ton

Notes & Assumptions

Provide all assumptions, rationales, and references for figures used in calculations.

Two key compoonents in calculating cost-effectiveness are the number of vehicle trips eliminated per day and the trip length. A frequently used proxy is the % of survey respondents who report they would have driven alone if not for the service being provided. If survey data is not available, alternative **supporting documentation must be provided to justify the inputs used in the CE calculations**.

Trips Eliminated Per Day

This is number of trips by participants that would have driven as a single occupant vehicle if not for the service; it is not the same as the total number of riders or participants.

Trip Length

Only use the trip length of the vehicle trip avoided by only the riders or participants that would otherwise have driven alone.

Policy 11. Duplication

MTC's regional ridehsaring program provides funding to counties. This funding may contain TFCA funding, which, if used in combination with TFCA funding, may violate Policy 11. Duplication.

Project Assumptions: Years of Effectiveness = 10

Rationales:

10 years is consistent with the max years of effectiveness for a Class I project. Concrete sidewalk typically has a longer life than an asphalt path.

Commute Trips:

Trip Length (1-way) = 1 mile Days/Year = 240 # trips/day (1-way) = 53

Per 2019 American Community Survey (ACS) 5-year data, there are 2670 workers ages 16+ in the project area. Per 2019 ACS data, 1.5% of workers in the project area currently commute via walking compared to 2.5% Citywide. Per 2019 ACS data, 9.3% of workers in the project area have a commute of <10 minutes and 9.9% have a commute of 10-14 minutes. Project assumes a 1% commute mode shift* <u>calculation:</u> 2670 x 1% = 26.7 (two-way trips) = 53.4 (one-way trips)

<u>School Trips:</u> Trip Length (1-way) = 1 mile Days/Year = 180 # trips/day (1-way) = 26

Napa Valley Language Academy (NVLA) elementary school has 658 students. Based on pre-pandemic hand count tallies and parent surveys, the percent of students at NVLA who walk to school is 2.32% lower than the district average. Project assumes a 2% walk mode shift* <u>calculation:</u> 658 x 2% = 13.16 (two-way trips) = 26.32 (one-way trips)

*The project area is located within a regionally designated Community of Concern, which was included in the Napa Valley Community Based Transportation Plan (CBTP). Community outreach conducted as part of the CBTP identified that nearly 20% of comments received indicated a desire for increased pedestrian safety and improved pedestrian access to schools and transit stops. Thus there is high-demand for pedestrian improvements in the project area which supports the mode shift assumptions used.

RIDESHARING, BICYCLE, SHUTTLE, AND SMART GROWTH PROJECTS FYE 2022 Worksheet, Version 2022.1, Updated 1/4/21

'E 2022 Worksheet,	Version 2022.1, Updated	1/4/21										
			Average A	uto (passenger	r cars, light	duty trucks,	and motorcy	cles) Emissio	n Factors			
	ROG NOx		IOx		PM ₁₀			CO2		CH4		
Emission Year	Trip Fac.	Run Emis. (VMT)	Trip Fac.	Run Emis. (VMT)	Exhaust	Tire,Brakes, Road PM	PM Commute Trip End	Trip Fac.	Run Emis. (VMT)	Trip Fac.	Run Emis. (VMT)	
2021	0.325	0.085	0.095	0.086	0.002	0.252186	0.005438	60.049283	282.164944	0.067090	0.005642	
2022	0.325	0.085	0.095	0.086	0.002	0.252186	0.005438	58.242517	273.490495	0.062092	0.005202	
2023	0.267	0.075	0.074	0.067	0.002	0.252186	0.005438	56.442597	264.762115	0.057566	0.004826	
2024	0.267	0.075	0.074	0.067	0.002	0.252186	0.005438	54.647913	256.042015	0.053422	0.004508	
2025	0.267	0.075	0.074	0.067	0.002	0.252186	0.005438	52.858848	247.313875	0.049589	0.004239	
2026	0.267	0.075	0.074	0.067	0.002	0.252186	0.005438	51.212913	239.653340	0.046197	0.004022	
2027	0.267	0.075	0.074	0.067	0.002	0.252186	0.005438	49.715023	232.749083	0.043219	0.003835	
2028	0.227	0.068	0.060	0.055	0.001	0.252186	0.004350	48.351677	226.576243	0.040579	0.003676	
2029	0.227	0.068	0.060	0.055	0.001	0.252186	0.004350	47.109586	221.068316	0.038219	0.003539	
2030	0.227	0.068	0.060	0.055	0.001	0.252186	0.004350	45.988842	216.181726	0.036097	0.003423	
2031	0.227	0.068	0.060	0.055	0.001	0.252186		44.974267	211.856042	0.034182	0.003322	
2032	0.227	0.068	0.060	0.055	0.001	0.252186		44.062562	208.050360	0.032473	0.003235	
2033	0.196	0.063	0.049	0.048	0.001	0.252186	0.004350	43.247236	204.721787	0.030956	0.003161	
2034	0.196	0.063	0.049	0.048	0.001	0.252186	0.004350	42.518682	201.821812	0.029593	0.003096	
2035	0.196	0.063	0.049	0.048	0.001	0.252186	0.004350	41.872073	199.315739	0.028374	0.003040	
2036	0.196	0.063	0.049	0.048	0.001	0.252186	0.004350	41.301898	197.166261	0.027286	0.002991	
urces:	ROG, NOX and PM10 (co	onverted from P	M2.5) are from	n CARB Cost Ef	fectiveness	Tables Novem	nber 2020 - Ta	ible 3. CO2 an	d CH4 are from El	MFAC2017 (v1.0.2) Emiss	sion Rates. Weighted averages of	FLDA, LDT1, LDT2, MCY. Data extracted on 9/18/19 and QA'd on 9/19/19

		Light duty	auto fuel effic	iency (modeled	i)			
	Gas	iciency	Diesel Fuel Efficiency					
	LDA	LDT1	LDT2	MCY	LDA	LDT1	LDT2	MCY
Emission Year	mile/ gal	mile/ gal	mile/ gal	mile/ gal	mile/ gal	mile/ gal	mile/ gal	mile/ gal
2021	31.07612823	26.7382681	24.52000756	37.16842229	47.50148	47.50148	47.5014804	47.5014804
2022	31.91570522	27.4093657	25.32896617	37.1769972	48.69225	48.692245	48.6922451	48.6922451
2023	32.80780426	28.1215955	26.18301387	37.18511856	49.97029	49.970289	49.9702887	49.9702887
2024	33.75016315	28.8726975	27.08037502	37.18776969	51.34233	51.342333	51.3423333	51.3423333
2025	34.74943753	29.669728	28.02740702	37.1838482	52.81715	52.81715	52.8171499	52.8171499
2026	35.70276228	30.4283507	28.94505849	37.18143797	54.2386	54.238603	54.238603	54.238603
2027	36.61144906	31.1569872	29.83915017	37.18000332	55.60675	55.60675	55.6067496	55.6067496
2028	37.46475361	31.8457267	30.69605943	37.17481405	56.89743	56.89743	56.8974299	56.8974299
2029	38.25949121	32.4959074	31.51362317	37.1671075	58.08745	58.08745	58.0874499	58.0874499
2030	38.99143456	33.1032794	32.28632034	37.16253599	59.18851	59.18851	59.1885097	59.1885097
2031	39.65997599	33.6705511	33.01345588	37.15805629	60.17224	60.172238	60.1722383	60.1722383
2032	40.26564771	34.1917657	33.68858339	37.14959129	61.07857	61.078569	61.0785686	61.0785686
2033	40.80891655	34.6690038	34.30774599	37.13542319	61.87757	61.877571	61.8775708	61.8775708
2034	41.2920562	35.1070206	34.87076695	37.12277776	62.58723	62.587232	62.5872324	62.5872324
2035	41.71753484	35.5021795	35.37546177	37.10770642	63.20997	63.209969	63.2099692	63.2099692
2036	42.08743484	35.8597771	35.8213026	37.0925393	63.74876	63.748758	63.7487583	63.7487583
2037	42.40401627	36.1769667	36.20890636	37.0772538	64.20806	64.208063	64.2080631	64.2080631
2038	42.67125672	36.458369	36.54328402	37.06111268	64.59407	64.594071	64.5940708	64.5940708

EMFAC2017 (v1.0.2) Emissions. Data extracted on 9/18/19 and QA'd on 9/19/19 by SN Sources

CARB - Table 2 Emission Factors for Cleaner Vehicles

or Light-Duty and Medium-Duty Trucks/SUVs (Chassis-Certified)

Baseline (Older) Technology Vehicle Baseline is California Vehicle Exhaust Standards ("LEV II") for average chassis-certified trucks for model year 2010. Factors assume emissions at 50,000 mile standard for the first 50,000 miles of the car's life (assumed to be 120,000 miles) and emissions at the 120,000 mile standard for the last 70,000 miles of the car's life. las

Average New Truck in 2010			

Weight (lbs.)1	ROG	NOx	PN	12.5	PN	PM10	
			Exhaust	Total ^{note}	Exhaust	Total	
Up to 8500	0.051	0.06	0.01	0.06	0.01	0.29	546
8501-10,000	0.148	0.195	0.07	0.13	0.07	0.68	735
10,001-14,000	0.173	0.39	0.07	0.14	0.07	0.70	824

aust, tire wear, brake wear, and

Replacement (Newer) Technology Cleaner Vehicle Jeaner Vehicle Emission Factors are from the California Vehicle Exhaust Standards for MYs after 2016 ("LEV III") evaluated for calendar year

Project Average New Trucks in 2019 Emission factors in grams/mile								
Weight (lbs.)1	ROG	NOx	PM2.5		PN	/10	CO ₂	
			Exhaust	Total	Exhaust	Total		
Up to 8500	0.04	0.054	0.003	0.049	0.00	0.25	546	
8501-10,000	0.104	0.149	0.008	0.072	0.01	0.37	735	
10,001-14,000	0.155	0.245	0.010	0.079	0.01	0.41	824	

Zero-emission lig	ght-duty and a	medium-dı	ity vehicle	(ZEV)			
Emission factors	in grams/mil	e					
Weight (lbs.)1	ROG	NOx	PN	12.5	PN	/10	CO ₂
			Exhaust	Total ³	Exhaust	Total	
Up to 8500	0	0	0	0.046	0.00	0.24	92
8501-10,000	0	0	0	0.064	0.00	0.34	92
10,001-14,000	0	0	0	0.069	0.00	0.37	144

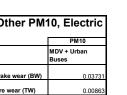
2013.

Gross vehicle weights can be associated with passenger capacity as follows: 5751-8500, roughly 8 passengers; 8501-10,000, roughly 10-15 assengers; 10,001-14,000, roughly 20 passengers or more. Total PM factors include exhaust, brake wear, and entrained road dust.

Table 3.2-16 PM Size Fraction Profiles for Gasoline and Diesel Vehicles in EMFAC 2014

		PM10			PM2.5		PM	2.5 to PM10	
_								GAS -	
Process	GAS - CAT	GAS - NCAT	Diesel	GAS - CAT	GAS - NCAT	Diesel	GAS - CAT	NCAT	Diesel
Running Exhaust	0.894	0.961	0.994	0.822	0.917	0.917	1.087591241	1.0479826	1.083969466
Idle Exhaust	0.894	0.961	0.994	0.822	0.917	0.917	1.087591241	1.0479826	1.083969466
Start Exhaust	0.894	0.961							
			0.994	0.822	0.917	0.917	1.087591241	1.0479826	1.083969466
Brake Wear	1	1	1	0.25	0.25	0.25	4	4	4
Tire Wear	0.98	0.98	0.98	0.42	0.42	0.42	2.333333333	2.3333333	2.333333333

Other PM10, Diesel Fleet							
Γ	PM10	PM10	PM10	PM10			
	LHDT1	LHDT2	MHDT	HHDT			
	8501-10000 lbs	10001-14000 lbs	14-33	33+			
Brake wear (BW)	0.07644	0.08918	0.13034	0.06079			
Tire wear (TW)	0.01200	0.01200	0.01200	0.03545			
Road Dust (RD)	0.14667	0.14667	0.14667	0.14667			
BW + TW + RD:	0.2351	0.2478	0.2890	0.2429			


Source for BW and TW: EMFAC 2017, Average of statewide BAAQMD fleet (all model years), aggregate all model years, aggregate all speeds Source for RD: Methods to Find the Cost-Effectiveness of Funding Air Quality Projects (May 2013), Table 1, PM2.5 converted to PM10

Source for RD: Methods to Find the Cost-Effectiveness of Funding Air Quality Projects (May 2013), Table 1, PM2.5 converted to PM10

oouroo ioi itto. mouro		r unung / ur u	addiney i rojooto	(11111) 2010),	10010 1,1

	PM10
	MDV, LHD1, LHD2, Urban Buses
Brake wear (BW)	0.04188
Tire wear (TW)	0.00800
Road Dust (RD)	0.14667
BW + TW + RD:	0.1965

Other PM	10, Natural		Other
	PM10		
	HHDT + Urban Buses		
Brake wear (BW)	0.06520	1	Brake wear (
Tire wear (TW)	0.03478		Tire wear (TV
Road Dust (RD)	0.14667		Road Dust (F
BW + TW + RD:	0.2466		BW + TW

0.14667 0.192

Process	Proportion distribution	PM2.5	Conversion factor PM2.5 to PM10	PM10
Exhaust	N/A	0.002	1.087591241	0.0021
BW + TW	100%	0.024	N/A	N/A
Brake we	82%	0.019704	4	0.078
Tire wear	18%	0.004296	2.3333333333	0.010
Road Dus	N/A	0.028	6.666666667	0.186
			Total PM2.5	0.054
			Total PM10	0.277

Additional Resources:

Annie Huang: ARB - 916-323-8475 (emissions inventory)

Sources: Proportion distribution of BW and TW - EMFAC 2014 Emission Inventory, Calendar Year 2015, LDA, LDT1, LTD2, and MYC, PMTW and PMBW

Conversion factor for RD - methodology and factor from Dennis Wade, ARB, confirmed by Amir Fanai, 2014, Conversion = PM2.5/Factor PM2.5 figures from Table 3A, email from Dennis Wade, 1/28/16

Dennis Wade: ARB - 916-327-2963 (EMFAC)

Emission Factors from Appendix D: Tables for Emission Reduction and Cost-Effectiveness Calculations (Carl Moyer Program)

Table D-1 Heavy Duty Vehicles 14,001 - 33,000 pounds (GVWR)

Engine Model Year	NOx(b)		ROG(b),(c)		PM(b),(i)	
	EF(d)	DR(e)	EF(d)	DR(e)	EF(d)	DR(e)
Pre-1987	14.52	0.031	0.89	0.051	0.713	0.0283
1987-90	14.31	0.041	0.7	0.06	0.774	0.0252
1991-93	10.7	0.054	0.37	0.031	0.425	0.0193
1994-97	10.51	0.063	0.27	0.036	0.241	0.0129
1998-02	10.33	0.072	0.28	0.036	0.266	0.0116
2003-06	6.84	0.071	0.23	0.021	0.175	0.0067
2007-09	3.99	0.09	0.18	0.007	0.014	0.0008
2007+(f)(0.21-0.50 g/	1.27	0.079	0.06	0.002	0.002	0.0001
2010-12(0.20 g/bhp-h	1.03	0.079	0.06	0.002	0.002	0.0001
2013+(g)(0.20 g/bhp-	1.03	0.045	0.06	0.001	0.002	0.0001
2016+(h)(0.10 g/bhp-	0.52	0.023	0.06	0.001	0.002	0.0001
2016+(h)(0.05 g/bhp-	0.26	0.011	0.06	0.001	0.002	0.0001
2016+(h)(0.02 g/bhp-	0.1	0.005	0.06	0.001	0.002	0.0001

Table D-2 Heavy-Duty Vehicles Over 33,000 pounds GVWR

Emission Factors (g/mile)(a) (EF) and Deterioration Rates (g/mile-10k miles) (DR)								
Engine Model Year	NOx(b)		ROG(b),(c)		PM(b),(i)			
	EF(d)	DR(e)	EF(d)	DR(e)	EF(d)	DR(e)		
Pre-1987	21.37	0.018	1.38	0.031	1.26	0.02		
1987-90	21.07	0.024	1.08	0.037	1.369	0.0178		
1991-93	18.24	0.037	0.78	0.027	0.574	0.0104		
1994-97	17.92	0.043	0.58	0.031	0.377	0.008		
1998-02	17.61	0.049	0.6	0.031	0.415	0.0073		
2003-06	11.66	0.049	0.49	0.018	0.267	0.0041		
2007-09	6.8	0.077	0.39	0.007	0.022	0.0006		
2007+(f)(0.21-0.50 g/l	2.17	0.068	0.13	0.002	0.004	0.0001		
2010-12(0. 2 g/bhp-hr	1.76	0.068	0.13	0.002	0.004	0.0001		
2013+(g)(0. 2 g/bhp-h	1.76	0.039	0.13	0.001	0.004	0.0001		
2016+(h)(0.10 g/bhp-l	0.88	0.019	0.13	0.001	0.004	0.0001		
2016+(h)(0.05 g/bhp-l	0.44	0.01	0.13	0.001	0.004	0.0001		
2016+(h)(0.02 g/bhp-l	0.18	0.004	0.13	0.001	0.004	0.0001		

 2016+(h)(0.02 ghtp)
 0.18
 0.004
 0.13
 0.001
 0.0001

 (a) EMFAC 2014 Zero-Mile Based Emission Factors. Factors are based on diesel engines. Same factors used for alternative fuel engines due to limited alternative fuel data in EMFAC.

 (b) Emission factors incorporte the ultra buschurd midesel engines. Same factors used for alternative fuel engines due to limited alternative fuel data in EMFAC.

 (c) Emission factors incorporte the ultra buschurd midesel engines. Same factors used for alternative fuel engines due to limited alternative fuel data in EMFAC.

 (d) Emission factors incorporte the ultra buschurd buschurd fuel correction factors into In Table D-22.

 (e) EMFAC provides HC emission factors is work for alternative fuel Same based on zero-mile rates contained in EMFAC 2014.

 (e) Deterioration Rate are per 10,000 miles.

 (f) All model year 2007 and newer engines with Family Emission Limits (FEL) from 0.21 g/bhp-hr to

 0.50 g/bhp-/m NOX must use different emission factors from model years 2010 and newer engines certified to 0.20 g/bhp-hr NOX standards. FEL emission factors for model year 2010-2012 engines that include weighted averaging of 0.5, 0.35, and 0.20 g/bhp-hr NOX standards based on sales.

 (g) Deterioration rates for 2013+ engines incorporate use of on-baard diagnostic system.

 (h) Factors for 2016+ engines are reduced values of 2013 factors by 50 percent, 75 percent, and 30 percent to correspond with 0.10 g/bhp-hr NOX, 0.05 g/bhp-hr NOX and 0.02 g/bhp-hr NOX standards, respectively.

 (i) Factors for 2006 or older engines are for unfiltered tru

Table D-3 Diesel Urban Buses (g/mile)

Engine Model Year	NOx(b)	ROG(b).(c)	PM(b),(e)
Pre-1987	42.97	1.88	0.929
1987-1990	37.39	1.87	0.878
1991-1993	23.72	1.84	0.835
1994-1995	27.71	1.81	1.015
1996-1998	36.46	1.81	1.217
1999-2002	18.97	1.81	0.417
2003	13.02	0.77	0.084
2004-2006	3.56	0.08	0.084
2007+(0.20 g/bhp-hr l	1.9	0.03	0.011
2016+(d)(0.10 g/bhp-l	0.95	0.03	0.011
2016+(d)(0.05 g/bhp-l	0.47	0.03	0.011
2016+(d)(0.02 g/bhp-l	0.19	0.03	0.011
(a) EMEAC 2014 Zer	n-Mile Based Emission Fact	ors	

(a) EMFAC 2014 Zero-Mile Based Emission Factors.
 (b) Emission factors incropare the ultra loss of the ultra loss

Table D-4 Alternative Fuel Urban Buses (g/mile)

Engine Model Year	NOx	ROG(b)	PM(d)		
Pre-2003	21.6	2.68	0.043		
2003-06	15.4	3.87	0.023		
2007+(0.20 g/bhp-hr l	0.65	0.04	0.001		
2016+(c)(0.10 g/bhp-l	0.33	0.04	0.001		
2016+(c)(0.05 g/bhp-l	0.16	0.04	0.001		
2016+(c)(0.02 g/bhp-l	0.07	0.04	0.001		

 2016+(c)(0.02 g/bhp-4]
 0.07]
 0.04
 0.001

 (a) EMFAC 2014 Zero-Mile Based Emission Factors.
 0.07
 0.06

 (b) EMFAC provides HC emission factors which are converted into ROG.
 ROG (Pre-2007 engines) = HC * 0.16137. ROG (2007+ engines) = HC * 0.013972.

 (c) Factors for 2016+ engines are reduced values of 2007 factors by 50 percent, 75 percent, and 90 percent to correspond with 0.10 g/bhp-hr NOx, 0.05 g/bhp-hr NOx, and 0.02 g/bhp-hr NOx optional low NOx standards, respectively.

 (d) Factors for 2006 or older engines are for unfiltered trucks.

Table D-5 Diesel Refuse Trucks

Diesel Refuse Trucks Emission Factors (g/mile)							
Engine Model Year	NOx(b)	ROG(b).(c)	PM(b).(g)				
pre-1994	34.69	0.01	0.346				
1994-97	31.53	0.01	0.137				
1998-02	31.25	0.01	0.144				
2003-06	21.39	0.01	0.086				
2007-09	11.25	0.14	0.008				
2007+(d)(0.21-0.50 g/	1.23	0.26	0.008				
2010+(e)(0.20 g/bhp-l	1.09	0.04	0.008				
2016+(f)(0.10 g/bhp-h	0.54	0.04	0.008				
2016+(f)(0.05 g/bhp-h	0.27	0.04	0.008				
2016±(f)(0.02 a/bbp b	0.11	0.04	0.008				

 Vic.1
 V.01
 U.005

 2016+f(1)(0.02.gbhp-h
 0.11
 0.04
 0.008

 Note:
 These demission factors are not applicable to transfer trucks.
 Transfer trucks must use the emission factors from Table D-1 or D-2. Per EMFAC 2014, solid waste collection vehicles are considered to be well-maintained and have negligible deterioration which is why only zero-mile emission factors are to be used in calculations for solid waste collection vehicle projects.

 (a)
 EMFAC 2014 Zero-Mile Based Emission Factors.

 (b)
 Emission factors incorporate the ultra low-suffur dised in Table D-22.

 (c)
 EMFAC provides HC emission factors which are converted into ROG. = HC * 126639.

 (d)
 All model year 2007 and newer englines with Family Emission Limits (FEL) from 0.21 g/b/p-hr NOx standards. FEL emission factors are based on EMFAC factors for model year 2010-2012 engines that include weighted averaging of 0.5, 0.35, and 0.20 g/b/p-hr NOx standards based on sales.

 (e)
 These 2010+ emission factors are based on EMFAC factors for model year 2010-2012 engines that include weighted averaging of 0.5, 0.35, and 0.20 g/b/p-hr NOx standards based on sales.

 (e)
 These 2010+ emission factors are based on EMFAC factors for model year 2010-2012 engines that include weighted averaging of 0.5, 0.35, and 0.20 g/b/p-hr NOx standards based on sales.

 (f)
 Factors for 2016+ engines are based on to on engines certified to the 0.20 g/b/p-hr NOx, 0.05 g/b/p-hr NOx, 0.05 g/b/p-hr NOx, 0.05 g/b/p-hr NOx aptional lo

Table D-6 Alternative Fuel Refuse Trucks Emission Factors (g/mile)					
Engine Model Year	NOx	ROG(b)	PM(d)		

Engine Model Year	NUX	RUG(D)	PM(0)
Pre-2007	53.2	9.86	0.091
2007-09	18.8	3.68	0.004
2010+(0.20 g/bhp-hr l	0.88	0.14	0.004
2016+(c)(0.10 g/bhp-h	0.44	0.14	0.004
2016+(c)(0.05 g/bhp-h	0.22	0.14	0.004
2016+(c)(0.02 g/bhp-h	0.09	0.14	0.004

2019 0.14 0.004 Note: These emission factors are not applicable to transfer trucks. Transfer trucks must use the emission factors from Table D-1 or D-2. Per EMFAC 2014, solid waste collection vehicles are considered to be well-maintained and have negligible deterioration which is why only zero-mile emission factors are to be used in calculations for solid waste collection vehicle projects. (a) EMFAC 2014 Zero-Mile Based Emission Factors.

(b) EMFAC provides HC emission factors which are converted into ROG.
 ROG (Pre-2007 engines) = HC * 0.6137. ROG (2007+ engines) = HC * 0.013972.
 (c) Factors for 2016+ engines are reduced values of 2010 factors by 50 percent, 75 percent, and 90 percent to correspond with 0.10 g/bhp-hr NOx, 0.05 g/bhp-hr NOx, and 0.02 g/bhp-hr NOX potention low NOx standards, respectively.
 (d) Factors for 2006 or older engines are for unfiltered trucks.

Table D-7 OFF-ROAD PROJECTS AND NON-MOBILE AGRICULTURAL PROJECTS Off-Road Diesel Engines Default Load Factors

	gines Default Load Factors	
Category		Load Facto
	Aircraft Tug	0.5
	Air Conditioner	0.7
	Air Start Unit	0.
	Baggage Tug Belt Loader	0.3
	Bobtail	0.3
	Cargo Loader	0.3
Airport Ground Suppo	Cargo Tractor	0.3
	Forklift	0.
	Ground Power Unit	0.7
	Lift	0.3
	Passenger Stand	0.
	Service Truck Other Ground Support	0.
	Equipment	0.3
	Agricultural Mowers	0.4
	Agricultural Tractors	0
	Balers	0.5
	Combines/Choppers Chippers/Stump Grinders	0.7
Agricultural (Mobile,	Generator Sets	0.7
Portable or	Hydro Power Units	0.4
Stationary)	Irrigation Pump	0.6
otationary)	Shredders	0.0
	Sprayers	0
	Swathers	0.5
	Tillers	0.7
	Other Agricultural	0.5
	Air Compressors	0.4
	Bore/Drill Rigs	0
	Cement & Mortar Mixers Concrete/Industrial Saws	0.5
	Concrete/Trash Pump	0.7
Construction	Cranes	0.2
	Crawler Tractors	0.4
	Equipment	0.7
	Excavators	0.3
	Graders	0.4
	Off-Highway Tractors	0.4
	Off-Highway Trucks	0.3
	Pavers	0.4
	Other Paving	0.3
	Pressure Washer	0
	Rollers	0.3
	Rough Terrain Forklifts	0
Construction	Rubber Tired Dozers	0
Construction	Rubber Tired Loaders	0.3
	Scrapers	0.4
	Signal Boards	0.7
	Skid Steer Loaders	0.3
	Surfacing Equipment Tractors/Loaders/Backhoe	0.3
	Trenchers	0
	Welders	0.4
	Equipment	0.4
	Aerial Lifts	0.3
	Forklifts	0
Industrial	Sweepers/Scrubbers	0.4
	Other General Industrial	0.3
	Other Material Handling	0
Legging	Fellers/Bunchers	0.7
Logging	Skidders	0.7
	Drill Rig	0
	Lift (Drilling)	0
Oil Drilling	Swivel	0
	Workover Rig (Mobile)	0
	Other Workover	
	Equipment	0
	Container Handling	
	Equipment	0.5
	Cranes	0.5
	Excavators Forklifts	0.5
	Forklifts Other Cargo Handling	0
Cargo Handling	Equipment	0.5
	Sweeper/Scrubber	0.6
		0.6
	Tractors/Loaders/Backhoe	
	S	0.5
	s Yard Trucks	0.5

orsepower	Model Year	NOx		ROG		PM10		1
IOISepower	Mouerrear	EF	DR	EF	DR	FF	DR	
	Pre- 1988	6.51	0.000098	1.68	0.00021	0.547	0.0000424	+
25-49	1988+	6.42	0.000097	1.64	0.00021	0.547	0.0000424	1
20 10	Pre- 1988	12.09	0.00028	1.31	0.000061	0.605	0.000044	+
20-119	1988+	8.14	0.00019	0.9	0.000042	0.497	0.0000361	1
	Pre- 1970	13.02	0.0003	1.2	0.000056	0.554	0.0000403	1
	1970-1979	11.16	0.00026	0.91	0.000042	0.396	0.0000288	1
	1980-1987	10.23	0.00024	0.8	0.000037	0.396	0.0000288	1
120+	1988+	7.6	0.00018	0.62	0.000029	0.274	0.0000199	1
120	1	5.26	0.000098	1.32	0.00017	0.48	0.0000372	1
	2	4.63	0.000093	0.22	0.00005	0.28	0.0000218	1
	4 (Interim)	4.55	0.000095	0.09	0.000036	0.128	0.0000096	1
25-49	4 (Final)	2.75	0.000057	0.09	0.000036	0.009	0.000001	1
	1	6.54	0.00015	0.9	0.000042	0.552	0.0000402	1
	2	4.75	0.000071	0.17	0.000025	0.192	0.0000141	1
	3(b)	2.74	0.000036	0.09	0.000023	0.192	0.0000141	1
	4 (Interim)	2.74	0.000036	0.09	0.000023	0.112	0.000008	1
50-74	4 (Final)	2.74	0.000036	0.09	0.000023	0.009	0.0000009	1
	1	6.54	0.00015	0.9	0.000042	0.552	0.0000402	1
	2	4.75	0.000071	0.17	0.000025	0.192	0.0000141	1
	3	2.74	0.000036	0.09	0.000023	0.112	0.000008	
	4 (Phase-Out)	2.74	0.000036	0.09	0.00003	0.009	0.0000009	
	4 (Phase-In or Alt. NOx)	2.15	0.000027	0.08	0.000021	0.009	0.0000009	
75-99	4 (Final)	0.26	0.0000035	0.05	0.000015	0.009	0.0000009	
	1	6.54	0.00015	0.62	0.000029	0.304	0.0000221	
	2	4.15	0.00006	0.15	0.000023	0.128	0.0000094	
	3	2.32	0.00003	0.09	0.00003	0.112	800000.0	
	4 (Phase-Out)	2.32	0.00003	0.09	0.00003	0.009	0.0000004	
	4 (Phase-In or Alt. NOx)	2.15	0.000027	0.08	0.00002	0.009	0.0000004	
100-174	4 (Final)	0.26	0.000004	0.05	0.000011	0.009	0.0000004	
		1	5.93	0.00014	0.29	0.000013	0.12	0.00000
		2	4.15	0.00006	0.11	0.000022	0.088	0.00000
		3	2.32	0.00003	0.09	0.000023	0.088	0.00000
		4 (Phase-Out	2.32	0.00003	0.09	0.000023	0.009	0.00000
		4 (Phase-In c	1.29	0.000017	0.06	0.000017	0.009	0.00000
175-299		4 (Final)	0.26	0.000036	0.05	0.000011	0.009	0.00000
		1	5.93	0.000099	0.29	0.00001	0.12	0.00000
		2	3.79	0.00005	0.09	0.000023	0.088	0.00000
		3	2.32	0.00003	0.09	0.000023	0.088	0.00000
		4 (Phase-Ou		0.00003	0.09	0.000023	0.009	0.00000
		4 (Phase-In c		0.000017	0.06	0.000017	0.009	0.00000
300-750		4 (Final)	0.26	0.0000036	0.05	0.000011	0.009	0.00000
		1	5.93	0.000099	0.29	0.00001	0.12	0.00000
		2 4 (Interim)	3.79 2.24	0.00005	0.09	0.000023	0.088	0.00000

751+ 4(Final) 2.24 0.00001 0.07 0.000011 0.017 0.000009 Note: Engines participating in the "Tiet 4 fety Introduction Incentive for Engine Manufactures" program per California Code of Regulations, Title 13, section 2423(b)(6) are eligible for funding provided the engines are certified to the final Tier 4 emission standards. The Air Resources Board (ARB) Executive Order indicates engines certified under this provision. The emission rates for these engines shall be equivalent to the emission factors associated with Tier 3 engines. Note: For equipment with baseline engines certified under the flexibility provisions per California Code of Regulations, Titles 13, section 2423(d), baseline emission rates shall be determined by using the previous applicable emission standard or Tier for that engine model year and horsepower rating. The ARB Executive Order indicates engines certified under this provision.

Table 12 LARGE SPARK IGNITION ENGINES Table D-10 Off-Road LSI Equipment Default Load Factors

Category	Equipment Type	Load Factor
	Agricultural Tractors	0.62
	Balers	0.55
	Combines/Choppers	0.74
	Chipper/Stump Grinder	0.78
Agriculture (Mobile, Portable or Stationary)	Generator Sets	0.68
Fortable of Stationary)	Sprayers	0.5
	Swathers	0.52
	Pumps	0.65
	Other Agricultural Equipme	0.55
	A/C Tug	0.8
	Baggage Tug	0.55
	Belt Loader	0.5
	Bobtail	0.55
Airport Ground Support	Cargo Loader	0.5
Aliport Ground Support	Forklift	0.3
	Ground Power Unit	0.75
	Lift	0.5
	Passenger Stand	0.59
	Other Ground Support Equ	0.5
	Air Compressors	0.56
	Asphalt Pavers	0.66
	Bore/Drill Rigs	0.79
	Concrete/Industrial Saws	0.78
	Concrete/Trash Pump	0.69
	Cranes	0.47
Construction	Gas Compressor	0.85
Construction	Paving Equipment	0.59
	Pressure Washer	0.85
	Rollers	0.62
	Rough Terrain Forklifts	0.63
	Rubber Tired Loaders	0.54
	Skid Steer Loaders	0.58
	Tractors/Loaders/Backhoes	0.48
	Trenchers	0.66
	Welders	0.51
Construction	Other Construction	0.48
	Aerial Lifts	0.46
	Forklifts	0.3
	Sweepers/Scrubbers	0.71
Industrial	Other Industrial	0.54

Table D-11a Off-Road and LSI Engines (g/bhp-hr) and deteorioration rates (g/bhp-hr-hr) Gasoline

Horsepower	Model Year	NOx		ROG		PM10	
		EF	DR	EF	DR	EF	DR
	Uncontrolled pre-2004	8.01	0.0000406	3.76	0.000412	0.06	0
25-50	Controlled 2001 - 2006	1.33	0.000471	0.71	0.000169	0.06	C
23=30	Controlled 2007 - 2009	0.89	0.0001192	0.473	0.000064	0.06	C
	Controlled 2010+	0.27	0.000025	0.142	0.000013	0.06	C
51-120	Uncontrolled Pre-2004	11.84	0.0000601	2.63	0.000287	0.06	C
	Controlled 2001 - 2006	1.78	0.000207	0.26	0.000081	0.06	C
	Controlled 2007 - 2009	1.17	0.000066	0.13	0.000074	0.06	C
	Controlled 2010+	0.35	0.00003	0.03	0.000014	0.06	C
	Uncontrolled pre-2004	12.94	0.000127	1.61	0.000042	0.06	0
101.	Controlled 2001 - 2006	1.94	0.000278	0.16	0.000102	0.06	0
121+	Controlled 2007 - 2009	1.17	0.000066	0.13	0.000074	0.06	0
	Controlled 2010+	0.35	0.00003	0.03	0.000014	0.06	0
Table D-11b Off-F	Road LSI Engines Emission	Factors (g/bh	o/-hr) and Dete	orioration Rate	es (g/bhp-hi	r-hr)	

Alternative Fuels

Horsepower	Model Year	NOx		ROG		PM10	
		EF	DR	EF	DR	EF	DR
	Uncontrolled pre-2004	13	0.0000662	1.38	0.000151	0.06	
	Controlled 2001 - 2006	1.95	0.000276	0.14	0.000106	0.06	
	Controlled 2007 - 2009	1.3	0.0000011	0.093	0.000172	0.06	
25-50	Controlled 2010+	0.39	0.0000002	0.028	0.000036	0.06	
	Uncontrolled pre-2004	10.53	0.0000533	1.55	0.000169	0.06	
	Controlled 2001 - 2006	1.58	0.00035	0.16	0.000103	0.06	
	Controlled 2007 - 2009	1.04	0.0000125	0.1	0.000047	0.06	
51-120	Controlled 2010+	0.31	0.000038	0.03	0.000014	0.06	
	Uncontrolled pre-2004	10.51	0.000104	1.38	0.000035	0.06	
	Controlled 2001 - 2006	1.58	0.000264	0.14	0.000106	0.06	
	Controlled 2007 - 2009	1.04	0.0000125	0.1	0.000047	0.06	
121+	Controlled 2010+	0.31	0.000038	0.03	0.000014	0.06	

Table D-12 Emission Factors for Off-Road LSI Engine Retrofits (g/bhp-hr)

Fuel	Verified Value	NOx	ROG	PM10
Gasoline	3	1.78	0.26	0.06
	2.5	1.48	0.22	0.06
	2	1.19	0.17	0.06
	1.5	0.89	0.13	0.06
	1	0.59	0.09	0.06
	0.6	0.35	0.03	0.06
	0.5	0.29	0.03	0.06
Alt Fuel	3	1.58	0.16	0.06
	2.5	1.32	0.13	0.06
	2	1.05	0.11	0.06
	1.5	0.79	0.08	0.06
	1	0.53	0.05	0.06
	0.6	0.31	0.03	0.06
	0.5	0.26	0.03	0.06

Table D-13a Off-Road LSI Engines Crtified to Optional Standards (g/hbp-hr) and Deteorioration Rates (g/bhp-hr-hr) Gasoline

Horsepower	Optional Standard	NOx		ROG		PM10	
		EF	DR	EF	DR	EF	DR
25-50	0.4	0.18	0.000017	0.09	8.7E-06	0.06	(
	0.2	0.09	0.000008	0.05	4.3E-06	0.06	(
	0.1	0.04	0.000005	0.02	2.7E-06	0.06	(
51-120	0.4	0.24	0.000021	0.04	3.4E-06	0.06	(
	0.2	0.12	0.00001	0.02	1.7E-06	0.06	(
	0.1	0.06	0.000005	0.01	9E-07	0.06	(
121+	0.4	0.26	0.000022	0.02	1.7E-06	0.06	(
	0.2	0.13	0.000011	0.01	9E-07	0.06	(
	0.1	0.06	0.000005	0.01	9E-07	0.06	
25-50	0.4	0.26	0.000022	0.02	1.7E-06	0.06	
	0.2	0.13	0.000011	0.01	9E-07	0.06	
	0.1	0.07	0.000006	0	0	0.06	
51-120	0.4	0.21	0.000031	0.02	0.000003	0.06	
	0.2	0.11	0.000015	0.01	1.3E-06	0.06	(
	0.1	0.05	0.000007	0.01	1.3E-06	0.06	(
121+	0.4	0.21	0.000034	0.01	1.6E-06	0.06	(
	0.2	0.11	0.000015	0.01	1.3E-06	0.06	(
	0.1	0.05	0.00001	0	0	0.06	

ALL ENGINES Table D-21

Table D-21		
Fuel Consumpti	ion Rate Factors (bhp-hr/gal)	
Category	Horsepower/Application	Fuel Consumptio
Non-Mobile Agric	cultur ALL	17.5
Locomotive	Line Haul and Passenger (20.8
	Line Haul and Passenger (18.2
	Switcher	15.2
Other	< 750 hp	18.5
	> 750 hp	20.8

 REFERENCES

 The information in these tables has already been incorporated into the preceding emission factor tables. These tables are included for informational purposes.

Table D-22 Fuel Correction Factors On-Road Diesel Engines							
Model Year	NOx		PM10	HC			
Pre- 2007		0.93	0.72	0.72			
2007+		0.93	0.8	0.72			